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Abstract

A new efficient algorithm on the wavelet basis is proposed for detecting resonance
peaks from invariant mass spectra. Different wavelet families are used in the analysis.
The algorithm was tested on both simulated and real data.

1 Introduction
The invariant mass method as very effective one is, therefore, one of the most usable tools
for data analysis in relativistic heavy ion physics. However there are serious problems
with extracting rare or short lived particle resonances in question from invariant mass
spectra because of the presence of bulky background, which dramatically increases when
the event multiplicity grows.

Two approaches are mostly used to overcome this problem: either to approximate
the spectrum pedestal by some appropriate function (usually a polynomial) and then to
subtract it from the spectrum or, more effective, but cumbersome, to simulate the pedestal
by Monte Carlo as a combination of background particles contributing to the same event
and then again to subtract it from the spectrum. An example of π+π− invariant mass
spectrum taken from our previous study [1] is depicted in fig.1. One can see almost invisible
peak of K0

S invariant mass = 0.49765 observed from STAR(RHIC, BNL) d-Au data at
200 Gev in fig.1(a). Result of its handling by subtraction of combinatorial background is
shown in fig.1(b).
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Fig. 1: Invariant mass distribution (a), with subtracted combinatorial background (b)

As it is seen, the significant part of a physical background is cleaned by subtraction
of a combinatorial pedestal, so S/B ratio is uncreased within the peak interval.

However, this approach supposes adequate knowledge about particles, which are alter-
native to the particle of interest in studied events. Since it is not always the case, physicists
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have often to guess what kind of processes contribute to form the background. Such an
arbitrariness leads often to a stray background (as it seen in fig.1b) and worsen the
accuracy of the peak position estimation. Therefore a method is needed that would be
able to analyze signals of invariant mass spectra independently of their origin, i.e. of
processes generating peaks and background.

Such an approach alternative to above mentioned common methods was proposed
in [1]. It is based on the wavelet analysis [2]. Wavelets have particular advantages, which
allows to skip the phase of background estimating and to make statistically proved
assertion of the peak existing. Besides, wavelets are robust, i.e. resistant to noise. These
advantageous properties of wavelets allow to recognize even very small resonance peaks
in invariant mass spectra on the huge pedestal of background particles.

After a short introduction to wavelets procedures for peak detection on the basis
of discrete and continuous wavelets are described in this paper. Then results of testing
the proposed procedures to handle experimental data for K0

S mesons produced in d-Au
collisions at 200 GeV are given.

2 Brief survey of wavelets
One-dimensional wavelet transform (WT) of the signal f(x) has 2D form. That allows
WT to overcome the main shortcomings of the Fourier transform such as: non-locality
and infinite support, necessity in a broad band of frequencies to decompose even a short
signal.

Wavelet transformation changes the decomposition basis, with functions which are
compact into time/space and frequency domain, so WT with wavelet function ψ of
function f(x) is defined as

Wψ(a, b)f =
1√
Cψ

∞∫
−∞

1√|a|ψ
(
b− x

a

)
f(x) dx (1)

with normalization constant

Cψ = 2π

∞∫
−∞

|ψ̃(ω)|2
|ω| dω < ∞,

where ψ̃(ω) is Fourier transform of the wavelet ψ(x). The inverse transform is given by
formula

f(t) = C−1
ψ

∫ ∫
ψ

(
t− b

a

)
Wψ(a, b)

dadb

a2
(2)

The condition Cψ <∞ is, at the same time, the condition of the wavelet ψ existence.
It holds, in particular, when the first n− 1 momenta are equal to zero:

∞∫
−∞

|x|mψ(x)dx = 0, 0 ≤ m < n. (3)

Due to freedom in the choice of the wavelet function ψ many different wavelets were
invented [2, 3], but we use in this paper two types of them: some of discrete wavelets
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and also continuous wavelets with vanishing momenta, one of which families is named
Gaussian wavelets(GW) because they are normalized derivatives of the well known Gauss
function

g(x;A, x0) = A exp

(
−(x− x0)

2

2σ2

)
. (4)

Wavelet analysis is accomplished usually by the following steps:

• make a proper choice of a wavelet type

• fulfill a wavelet filtering for de-noising, removing pedestals, and extracting some of
needed features of analyzed data.

In its turn the filtering is carried out by:

• transforming data to a wavelet domain

• applying desirable cuts on wavelet 2D-spectrum

• making an inverse transform

2.1 Continuous wavelets with vanishing momenta

The family of continuous wavelets with vanishing momenta (VMW) is presented here
by Gaussian wavelets, which are generated by derivatives of Gaussian function (4). For
canonical Gaussian with x0 = 0; σ = 1 one obtains:

gn(x) = (−1)n+1 d
n

dxn
e−x

2/2, n > 0 (5)

The VMW family is called so because the condition (3) is always holds for it.
The normalizing coefficients of these wavelets Cgn are 2π(n− 1)!.
It is a remarkable fact that the wavelet transformation of a Gaussian (4) looks as the

corresponding wavelet. Therefore the general expression for the n-th wavelet coefficient
has the following form (see derivations in [3]):

Wgn(a, b)g =
Aσan+1/2√
(n− 1)!sn+1

gn

(
b− x0

s

)
, (6)

where we denote s =
√
a2 + σ2.

Therefore at the central point x = x0 coefficients of two first even, symmetrical wavelets
WG2(a, x0)g and WG4(a, x0)g obtain their maximum (absolute) values

WG2(a, x0)g =
Aσa5/2

s3
, WG4(a, x0)g = −

√
3

2

Aσa9/2

s5
. (7)

One of the attractive features of the wavelet based estimations is their remarkable
robustness to background noise, binning range and data missing (see [3]).
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2.2 Discrete wavelet transform

Continuous wavelets such as GW gives us a good instrument for the time-frequency
analysis of the signal of any possible kind, but they have some shortcomings. Parameters a
and b in formula (1) are changing continuously, what leads to the redundant representation
of the data. In some cases above mentioned GW properties are quite positive, in particular
this redundant representation facilitates the careful spectrum manipulations. The price of
this redundancy consists in slow speed of calculations. Besides, GW are nonorthogonal,
which disturbs amplitudes of filtered signal after their inverse transform. Moreover, all
signals to be analyzed have in practice a discrete structure. Therefore discrete wavelet
transforms (DWT) look more preferable for many applications of computing calculations
with real data.

To start with a discretization we have to present the scale and shift parameters in the
form a = am0 , b = nam0 ; m,n ∈ Z That is, intuitively, clear: with increasing the scale,
we should increase a step of shifting too.

The discrete wavelet transform is built by the multi-resolution analysis (MRA), inven-
ted by the S. Mallat [4]. The basic idea of the MRA is to represent given signal as its
decomposition by two basis functions φm,n(x) = 2−m/2φ(2−mx − n) and φ0,0 =
2
∑

n hnφ(2x− n), which must be orthogonal and compact in time/space and frequency
domains.

Thus for digital signals the DWT conception is as follows: the original data set, i.e.
the sample {xi}, i = 1..n is approximated by a new set {{sn}, {{dj,n}}} of coefficients,
which give the wavelet decomposition of the signal. Most remarkable is the number of
the coefficients, which we obtained, is equal to the sample size, in contrast to continuous
wavelet transform (CWT). The coefficients s(j, n) — are called approximation, and dj,n
— details, which correspond to the decomposition level j. Finally, the decomposition by
the DWT of the function f(x) looks like:

f(xi) =

N

2L∑
k=1

skφL,k(xi) +

L∑
j=1

N

2j∑
k=1

djkψj,k(xi) (8)

In each decomposition step, the smoothed version of the signal is decomposed to the new
more smoothed one and details. Each of the arrays has the half length of the signal. By
iterating this procedure we’ve got the such kind of the decomposition (8).

3 Peak detection using discrete wavelets
To implement peak finding procedure using discrete wavelets we suggest a modification
of well-known shinkage procedure (i.e., nonlinear soft thresholding) [6] (see also a survey
in [7]), which we called “the adaptive wavelet shrinkage”. The term “adaptive” means here
that we allow the shrinkage parameter λ in the shrinkage rule [7], to be not a constant, but
to depend on the root mean square (RMS) of the wavelet decomposition coefficients on the
given decomposition level. We use the linear dependence λ = k ∗ ṘMS with parameter k
equal to 3, assuming that wavelet coefficients are normally distributed. This choice k = 3
should guarantee that we will eliminate the most of the noise components of the signal.
Thus, the adaptive shrinkage rule is

Wψ = 0, if |Wψ| < λ, λ = k ∗RMSi, k = 3, i = scale0, .., scale1
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We use two different types of discrete wavelets: orthogonal and bi-orthogonal ones with
different decomposition bases. After some attempts we chose three families of DWT:
Coiflets with one vanishing momentum from the most symmetric wavelet family, Daube-
chie wavelets with two vanishing momenta and bi-orthogonal CDF44 wavelets [8]. We
compare their efficiency applying to the the same example, which was presented above in
fig.1(a-b). In fig. 1 − 2 there are presented the normalized event distribution
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Fig. 2: Wavelet filtering of invariant mass distribution: (a) - Coifman wavelet 6-tap, (b) -
Daubechies wavelet 4-tap, (c) - Cohen-Daubechies-Feauveau wavelet (4,4)

1/N∗ · dN/dmπ+π− of invariant weight of the pion pairs produced in central |η| < 0.5
collisions d− Au at energy 200 GeV in a range mπ+π− = 0.3 − 1 GeV.

Fig.2 demonstrates the results of wavelet analysis of the distributions for different
discrete wavelets [2, 5]. Wavelet coefficient distribution dW/dmπ+π− of pair π+π− invariant
mass for Coifman wavelet is shown in fig. 2a. There are two areas of “irregular” behavior
of the distribution: the first relates to the edge effect, the second relates to the existence
of resonance peak in the kaon invariant mass interval, which is clearly seen. The peak
shape reflects the symmetrical shape of Coifman wavelet function having one maximum
and two minima.

The result of applying Daubechies wavelet with two vanishing momenta or 4-tap
filter is presented in fig.2b. One can see, the strong edge effect on the left, and a small
asymmetrical peak in the kaon mass interval. The fig.2c is obtained by applying the bi-
orthogonal CDF44 wavelet for the shrinkage procedure. Unlike 2a and 2b cases where
orthogonal wavelets were used, here the influence of background noise component still
remains, but the pedestal is completely eliminated, comparing to fig. 1b. The presence of
the resonance peak in the expected region of kaon invariant mass is also clearly indicated.
All peaks in fig. 2a, 2b, 2c were developed in the wavelet domain at the wavelet scale equal
to three, what gave us a rough estimate of the peak width.

The problem of the better precision of the peak position estimation is discussed in the
next section.

4 Evaluating peak position by continuous wavelets
In cases when a peak in question has a bell-shape form which could be approximated
by a gaussian (4) continuous wavelets can appear to be more suitable to evaluate peak
parameters because of the very simple analytical expressions (6) of the gaussian wavelet
transform for Gaussian peaks. That allows us to work directly in the wavelet domain
instead of time/space domain. Moreover, in real cases when our signal shape is close to a
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gaussian and it is considerably contaminated by additive noise and, besides, distorted by
binning to be input to computer, one can also use the remarkable robustness of gaussian
wavelet filtering proven in [3].

The main idea of our innovative algorithm is to transform the signal to the space
of the chosen wavelet (say, G2 or G4) domain where the easy analytical formula of the
corresponding wavelet surface is valid for our gaussian-like signal. Therefore one can fit this
ideal surface to the surface obtained for the real spectrum. To initiate such 2D nonlinear
fit one needs a starting point in 2D (a, b) domain, one can find maxima of the wavelet
as the solution of equations obtained by differentiating and zeroing each of (7). In this
way one would obtain just the 2D maximum of the corresponding wavelet. Although the
maximum of a real contaminated signal is inevitably blurred over some area in the wavelet
space due to various distortions, it nevertheless, can be used as a good starting point for
iterations minimizing a fitting functional.

To realize this idea we tested both G2 and G4 gaussian wavelets to filter bell-shaped
and distorted signals. Since the study accomplished in [1] for both wavelets shown better
performance for G4, we describe here corresponding considerations and results for this
type of wavelets.

We apply G4 because this wavelets have four vanishing momenta and, therefore, the
filtering with them erases any pedestal, if it looks as a parabola. According to (7) one can
obtain the maximum of G4 for a Gaussian (4) in the shift point b = x0 as

maxbWG4(a, x0)g = −
√

3

2

Aσa9/2

(a2 + σ2)5/2
. (9)

This dependence looks in the wavelet domain of G4 like a simple curve with one maximum.
To find it one has to solve the equation

d(maxbWG4(a, x0)g)

da
= 0.

Its solution at the scale a is amax = 3σ.
In order to test G4 based filtering we prepare the simulated spectrum of invariant mass,

which consists of small gaussian peak at the point 0.47GeV and a pedestal produced by
a polynomial of the power four.

Result of the filtering such the signal with this scale amax = 3σ is shown in fig.3.
Although it is hard to recognize peak existence by eyes in fig. 3a, the corresponding peak
is clearly seen in fig. 3b, where a surface of wavelet coefficients of simulated signal is
depicted.

As one can see, the gaussian component of the signal has a form of 2D peak at 0.47GeV .
It is necessary to point out that the wavelet transformation in this particular example

was calculated assuming the signal can be prolonged, if it is needed to avoid edge effects,
outside of the boundaries of distribution interval.

Boundaries and pedestal problems. The case of infinite interval is rather artificial,
and in practice physicists deal with histograms on the finite interval, which is also splitted
into a fixed number of bins. In this case for non-zero pedestal we obtain in the wavelet
domain not a single point, as before, but two straight lines restricting an admissible
triangle area between two scales:

scalemin =
7(b1 − b0)

6Nb
, scalemax =

(b1 − b0)

6
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Fig. 3: (a) Invariant mass distribution (signal + background). The resonance is pointed by
arrow. (b) Wavelet distribution dW/dm of invariant mass mπ+π− for different scales. Results are
obtained for infinite interval on mπ+π−

The minimal scale comes from the constraint of the histogram bin size. The maximal scale
is caused by the influence of the boundaries of the finite spectrum interval. So for the real
data with finite bounds we have the following constraints defining the fit area: it should
be inside of the triangle, which is depicted in fig.4. One can see in fig.5 that outside of
this triangle area the edge effects become too strong.

This force us to modify the algorithm of the peak parameter estimation in the way to
use only triangle area for fitting in the wavelet domain.

Fig. 4: Wavelet distribution dW/dm of invariant mass mπ+π− for different scales. Results are
obtained for finite interval on mπ+π−

5 Application example for neutral K-short meson
We apply the above developed techniques for searching the resonance peak in the spectrum
of invariant mass of pion pairs obtained from experimental data, which is presented in
fig.6.

We use 240K events of the STAR, RHIC&BNL data for d-Au at 200 GeV. The
distributions of invariant mass pion pairs are presented in fig. 5a and 5b . Data are
taken by the STAR TPC from invariant weight interval from 0.4 up to 0.7 GeV, and
pseudo-rapidity interval from −1 up to +1. Invariant mass distribution of pion pairs with
different signs of charge is shown in fig.5a. The combined mass distribution of pairs with
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equal signs of charge, which is background for distribution 6a, is shown in fig.5b. Both
distributions are normalized. One can hardly guess that there is a peak at 0.49 GeV in
fig.5a, which corresponds to mass of the short neutral kaon.
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Fig. 5: (a) Normalized invariant mass distribution for π+π− pairs produced in d−Au collisions
at

√
s = 200 GeV. (b) The corresponding combinatorial background. Experimental data are

obtained by the STAR collaboration

Then we apply two classical methods of extracting this peak which are based on
estimating the pedestal and then subtracting it from the initial spectrum. Results are
presented in fig. 6a and 6b. Distribution 6a produced from distribution at the figure 5a
by subtraction of the pedestal, which was approximated by a polynomial of the fourth
order. Distribution 6b produced from distribution at the figure 5a by subtraction of the
pedestal, which was simulated as a combinatorial background and presented in fig.6b. The
black thick lines in fig.6a and 6b were obtained as straightforward estimations of Gaussian
peaks by χ2 minimization procedure.
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Fig. 6: Normalized invariant mass distribution for π+π− pairs produced in d − Au collisions
at

√
s = 200 GeV with subtracted combinatorial background (a) and polynomial fitted

background (b)

The ROOT fitting procedure in wavelet domain inside the triangle area gave us the
following results:

• in case of polynomial estimation 0.491095 GeV, in case of combined estimation
0.493544 GeV. Particle Data Group K0

S invariant mass 0.497648 GeV.
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• G2 gives following results: polynomial estimation 0.488934 GeV, combined estimation
0.505 GeV.

• G4 gives following results: polynomial estimation 0.487966 GeV, combined estimation
0.498821 GeV.

6 Conclusion
The study made in this paper was caused, from one hand, by the wide popularity of the
invariant mass method in contemporary relativistic heavy ion physics and, from another
hand, by a dissatisfaction of physicists with carrying out this method which requires a
preliminary estimation of combined background, in order to subtract it then from the
initial invariant mass distribution.

Since physical processes used to estimate the combined background are not always
well-defined, such the background subtraction methods gives sometimes ambiguous and/or
inaccurate results.

Therefore a new approach of different nature is proposed here. It is based on the
wavelet analysis and allowed to develop algorithms as for resonance peak detecting as for
its position estimating.

The new adaptive shrinking algorithm is proposed based on discrete wavelets to detect
a peak existence directly without preliminary background estimation and subtraction.
Orthogonal and biorthogonal discrete wavelets were compared and eventually the ortho-
gonal coiflet were chosen for adaptive shrinking as the most effective and robust.

Continuous wavelets of gaussian type were studied to evaluate their applicability
to estimate resonance peak parameters in presence of bulky complex background. The
algorithm applied the G4 wavelet with special constrains showed its advantage in compa-
rison with conventional methods based on the standard least square fit as well as on the
combined background estimation. This comparative study was carried out on the example
of searching the K0

S invariant mass in the invariant mass spectrum of π+π− obtained on
data from the STAR TPC.
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